Effects of fasciculation on the outgrowth of neurites from spinal ganglia in culture
نویسندگان
چکیده
This report describes the influence of neurite fasciculation on two aspects of nerve growth from chick spinal ganglia in vitro: the inhibition of outgrowth by high concentrations of nerve growth factor (NGF) and the preferential growth of neurites toward a capillary tube containing NGF. These studies involved a comparison of cultures of single cells, cell aggregates, and intact ganglia and the use of antibodies against the nerve cell adhesion molecule (CAM) to perturb fasciculation under a variety of conditions. The inhibition of outgrowth, which was observed with ganglia and aggregates but not with single cells, was correlated with a thickening of neurite fascicles. In accord with this observation, anti-CAM, which diminishes fasciculation by inhibiting side-to-side interactions between individual neurites, also partially reversed the inhibition of neurite outgrowth at high NGF concentrations. On the basis of these and other studies, we consider the possibility that neurite bundling causes an increase in the elastic tension of a fascicle without a compensatory increase in its adhesion to substratum. It is proposed that this imbalance could inhibit neurites from growing out from a ganglion and even result in retraction of preexisting outgrowth. In the analysis of NGF-directed growth, it was found that a capillary source of NGF produced a steep but transient NGF gradient that subsided before most neurites had emerged from the ganglion. Nevertheless, the presence of a single NGF capillary caused a dramatic and persistent asymmetry in the outgrowth of neurites from ganglia or cell aggregates. In contrast, processes of individual cells did not appear to orient themselves toward the capillary. The most revealing finding was that anti-CAM antibodies caused a decrease in the asymmetry of neurite outgrowth. These results suggest that side-to-side interactions among neurites can influence the guidance of nerve bundles by sustaining and amplifying an initial directional signal.
منابع مشابه
Culture of isolated embryonic chick dorsal root ganglia at an air-liquid interface: a simple method for studying the mechanism and control of neurite outgrowth.
Extensive neurite outgrowth occurs within 24 h from explants of embryonic chick dorsal root ganglia floated on the surface of serum-free culture medium. The amount of neurite outgrowth was less in culture medium containing serum albumen and varied systematically with the concentration of nerve growth factor (NGF). Compared with outgrowth from floating ganglia, the NGF-dependent outgrowth of neu...
متن کاملEffects of Fasciculation
This report describes the influence of neurite fasciculation on two aspects of nerve growth from chick spinal ganglia in vitro : the inhibition of outgrowth by high concentrations of nerve growth factor (NGF) and the preferential growth of neurites toward a capillary tube containing NGF. These studies involved a comparison of cultures of single cells, cell aggregates, and intact ganglia and the...
متن کاملEffects of Fasciculation
This report describes the influence of neurite fasciculation on two aspects of nerve growth from chick spinal ganglia in vitro : the inhibition of outgrowth by high concentrations of nerve growth factor (NGF) and the preferential growth of neurites toward a capillary tube containing NGF. These studies involved a comparison of cultures of single cells, cell aggregates, and intact ganglia and the...
متن کاملEffects of Fasciculation
This report describes the influence of neurite fasciculation on two aspects of nerve growth from chick spinal ganglia in vitro : the inhibition of outgrowth by high concentrations of nerve growth factor (NGF) and the preferential growth of neurites toward a capillary tube containing NGF. These studies involved a comparison of cultures of single cells, cell aggregates, and intact ganglia and the...
متن کاملSchwann cell type V collagen inhibits axonal outgrowth and promotes Schwann cell migration via distinct adhesive activities of the collagen and noncollagen domains.
Previously, we reported the cloning of alpha4 type V collagen, a novel member of the collagen type V gene family that is expressed by Schwann cells in developing peripheral nerves (Chernousov et al., 2000). The present study was performed to investigate the effects of this collagen on the adhesion and migration of premyelinating Schwann cells and neurite outgrowth from embryonic dorsal root gan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 87 شماره
صفحات -
تاریخ انتشار 1980